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Elastomers Having High Functionality 
Cross Links 
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Cincinnati, OH 45221-01 72 USA 

(Received May 26, 1992) 

Poly(dimethylsi1oxane) networks of high cross-link functionality have been prepared by end linking 
vinyl-terminated chains with multifunctional poly(methylhydrosi1oxane) chains. They covered a wide 
range in the extent of reaction, Pv,, of the vinyl end groups. At small strains, these networks had 
elongation moduli that significantly exceeded the values predicted by the Flory-Erman theory. Neglected 
in such standard analyses, however, is the fact that the segments between cross links along the junction 
precursor molecule can themselves act as short network chains, contributing to the modulus and giving 
a strongly bimodal distribution of both network chain lengths and cross-link functionalities. As would 
be expected, an unmistakable transition is observed in values of the shear modulus G toward the 
phantom limit of deformation as the crosslink density increases. Calculations based on recognition of 
such short chains give results in much better agreement with experiment. The results so obtained showed 
strong dependence of the elastomeric properties on the extents of reaction and the inherent network 
imperfections. Such imperfections have a pronounced effect on the equilibrium modulus, more specif- 
ically on the empirical constant 2Cz. The dependence of 2C2 on the volume fraction of the elastically 
“effective” chains is thus established. Moreover, the results unambiguously demonstrate that the em- 
pirical constant 2Cz is essentially a topological contribution and contains no contributions from the 
chemical network. 

KEY WORDS Network, imperfections, polydimethylsiloxane, modulus, elastomers. 

INTRODUCTION 

Silicone networks of high junction functionality are prepared by end linking 
vinyl-terminated groups on the a, w modification of poly(dimethylsi1oxane) 
(PDMS) with Si-H groups in the junction precursor poly(hydromethylsi1oxane) 
[-SiH(CH,)w],. Such networks have been prepared and their elastomeric prop- 
erties have been reported in the literature.’-’ They have been formed under con- 
ditions of varying molar ratio R of Si-H groups to vinyl end groups. Networks with 

v 
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238 M. A. SHARAF 

high extent of reaction of vinyl groups (Pvi > 0.9) were prepared by having R 
slightly greater than unity (i.e., excess Si-H groups). In one of these ~ t u d i e s , ~  
networks were formed such that Pvi covered a wide range of values, from 0.40 to 
0.95. This was achieved by having R < 1, and under such conditions the end- 
linking reaction does not go to completion. 

The most interesting result obtained in these studies is the observation that the 
shear moduli in the small deformation limit considerably exceeded the values 
predicted from the expected junction functionality 4 and the concentration of 
elastically effective chains expected from the stoichiometry of the end-linking re- 
action.’-’ Another interesting observation concerns the dependence of the fluc- 
tuations of the junctions on their functionality. The modulus or reduced stress [f*] 
is commonly defined as8-11 

[f*] = f ~ i ’ ~ / A * ( a  - a-’) 

where f is the equilibrium elastic force, A* the cross-sectional area of the unde- 
formed sample, a the elongation or  relative length of the sample, and with u2 being 
the volume fraction of polymer during the stress-strain measurements. 

The dependence of the reduced stress on the elongation a is generally represented 
by the semi-empirical, Mooney-Rivlin Equation9-12 

[f*] = 2c1 + 2c2a-I 

where 2C1 and 2C2 are constants independent of a. The constant 2C1 is thought 
to approximate the modulus in the high-elongation limit of an idealized “phantom” 
network, where the network junctions undergo very large f l u c t u a t i ~ n s . ~ ~ * ’ ~ - ~ ~  The 
constant C = 2C1 + 2C2 then approximates the modulus in the limit of very small 
deformations, where chain-junction entangling suppresses the fluctuations, causing 
the network chain dimensions to change affinely (linearly) with changes in the 
macroscopic dimensions of the The constant 2C2 is then viewed as 
representing the decrease in modulus resulting from the deformation becoming 
increasingly non-affine as the elongation  increase^.'^.'^ The junction fluctuations 
that cause this non-affineness should be suppressed when the cross-link functionality 
is high, because of the larger number of chains emanating from such cross 
links. Thus, 2C2 is predicted to be very small and would asymptotically 
approach zero with increase in 4 ~ ~ ~ . ~ ~ - ~ ~  The reported values of 2C2, however, 
were relatively large, even for + > 30.2-7 

Recently, attention has been focused on the short chain segments between the 
cross-linking points along the junction precursor m o l e ~ u l e s . ~ ~ - ~ ~  Such segments 
were found, inadvertently, to act as short network chains, thus contributing to the 
modulus and giving a strongly bimodal distribution of both network chain lengths 
and cross-link functionalities. Reexamination of some of the published results on 
this basis for networks that covered a range in the extent of reaction of vinyl groups 
gave much better agreement between experiment and t h e ~ r y . ~ O - ~ ~  More specifi- 
cally, consideration of the possibly bimodal nature of these high-functionality net- 
works provided a reasonable explanation of their unexpectedly high values of the 
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NETWORK IMPERFECTIONS 239 

phantom modulus 2C1 .20-23 This revised interpretation also explained the obser- 
vations that the empirical constant 2C,  was not as small as e~pected.~O-,~ Small 
values of 2C2 would have required that junction fluctuations be suppressed at all 
elongation, and this is not true for the short chains because of their being attached 
to junctions of low functionality and because of their reduced interpenetration. 
Additional complications in networks which intentionally prepared so as to cover 
a wide range of extent of reaction, specifically P,, - 0.40 - 0.95, were also treated 
by resorting to the same model. More specifically, the extent of reaction should 
affect the numbers and lengths of the short chains introduced from the end-linking 
molecules, and also the effective functionalities they impose on the long network 
chains t h e m s e l v e ~ . ~ ~ - ~ ~  

It should be noted that in most of the relevant experimental studies,2-6 attention 
was focused only on the small-strain modulus. Pertinent here is the fact that values 
of the empirical constant 2Cz were found to depend on the extent of reaction. At 
lower extents of reaction, numerous network imperfections, particularly, dangling 
ends are expected to be present, and thus would act as a diluent even in the dry 
unswollen state. As is well known, the constant 2C2 and the related ratio 2C2/2C, 
decrease with swelling. Very little quantitative information is known, however, 
about the dependence of elastomeric properties, particularly 2C2, on the network 
imperfections. The present paper therefore reexamines the small strain results, in 
order to scrutinize contributions to the modulus from such imperfections, in general. 

STRUCTURAL CONSIDERATIONS AND THE THEORY OF ELASTICITY 

In the case of a silane end-linking agent having very high functionality, sequences 
between the Si-H groups that have reacted (i.e., between cross links) could well 
be of sufficient length to act as network chains themselves, yielding a bimodal 
n e t ~ o r k . ~ O - ~ ~  Some of the largest improvements in properties of networks inten- 
tionally made to be bimodal occur, in fact, when the short chains have only six 
skeletal bonds, the minimum number investigated to date.”.25 The length for max- 
imum effect could thus even be ~ r n a l l e r . ~ ~ , ~ ~  

Such short chains would effectively be cross-linked with trifunctional junctions, 
as illustrated in Figure 1(a).21,22 The long chains, on the other hand, would then 
effectively be cross-linked by junctions of lower functionality than would be sug- 
gested by the functionality of the silane itself. As can be seen from part (b) of the 
sketch, introducing a new long chain (shown dashed) increases the number of short 
chains by two. Thus, each long chain (I) would give rise to two short chains ( s ) . ~ ~ , , ,  

Molecular theories of rubberlike elasticity can be divided into two categories: 
those based on networks which ’deform affinely (linearly) with the macroscopic 
deformation, and those based on phantom networks.” Both theories are based on 
simple Gaussian statistics of the network-chain end-to-end distances. In an affine 
network, fluctuations of the junctions are suppressed by neighboring chains sharing 
the same region of space.1° Consequently, the chain junctions undergo affine dis- 
placements, and the reduced stress for a perfect network is given by8-l0 

[f*Iaff = vRT( V/V0)2’3 (3) 
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240 M. A. SHARAF 

shatsementsdmgthe highfunctiondityjdion 

/- 
FIGURE 1 Sketches showing parts of a network having high-functionality cross links. Part (a) shows 
how segments between cross links along the end-linker molecule (darkened chains) can act as short 
chains in a bimodal network. Part (b) demonstrates the two-to-one correspondence of short chains thus 
generated to the long chains giving rise to them.2'.zz 

where u is the number density of elastically effective chains (joined to junctions 
of functionality C$ 2 2),19 R the gas constant, T the absolute temperature, V the 
volume of the network, and V ,  the reference volume (at which the network was 
prepared). 

In the phantom network, on the other hand, the chains are assumed to be devoid 
of material properties, i.e., they can move freely through one a n ~ t h e r . ' ~ ~ ' ~ - ' ~  The 
mean positions of the junctions are affine in the strain, but the fluctuations about 
the mean positions are invariant with strain. The modulus is expressed as10J-39 

where 

6 = v, - pa = v - p ( 5 )  

is the cycle rank of the network, v, and F, are the number density of elastically 
active chains and junctions, respectively, and p is the number density of the elast- 
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NETWORK IMPERFECTIONS 241 

ically effective junctions. For a perfect network having functionality 4, the cycle 
rank is expressed asI9 

5 = (1 - a) v, 
The number of active junctions F, is given by19 

In simple elongation of real networks, the stress-strain isotherm lies between 
these two  limit^.^^.'^-'^ The Flory-Erman theoryI5-'* assume that the fluctuations 
of the junctions about their mean positions are constrained by interactions with 
neighboring chains. According to this theory, the reduced stress is given 

where f c  and [ f * I c  are the force and reduced force arising from the constraints on 
the fluctuations, and f p h  and [ f * I p h  are the corresponding quantities predicted from 
the phantom network theory. The ratio f c / f p ,  is strain dependent and depends on 
two parameters, namely K and 5 . 1 5 - 1 8  The more important of the two is K which 
serves as a measure of the severity of the entanglement constraints relative to those 
in a phantom network.l5-Is The other parameter is 5 which takes into account the 
possibly non-affine transformations of the domains of constraints with increasing 
deformation.I5- l8 These quantities and the underlying theory are discussed in greater 
details elsewhere. The theory predicts that f c / f p h  vanishes in the limit of high 
deformation. Hence, the modulus would approach the phantom limit at a + m. It 
should also vanish as the functionality of the network The relative 
contribution from the constraints specifically in the affine limit (a  -+ 1, K + m) is 
predicted to beI5-l8 

Previous results on PDMS networks indicate that K is related to the phantom 
modulus, and consequently to the phenomenological parameter 2C1.26 It has been 
possible to estimate values of the parameter K for such bimodal networks, according 
to the relationship*l 

K = ( A / [ f * ] f t )  [(2/4,) + 4/31 [(I - 2/41) + 2/3]1/2(2)3'2 (10) 

where A is a constant found to have a value of 2.0 N1'* mm-l for model PDMS 
networks, according to data reported elsewhere.26 

If the short segments along the cross-linking precursor are elastically effective 
as network chains then the number of new chains is equal to 2u, having 4 = 3. 
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242 M. A. SHARAF 

Thus u increases by the factor 3. In the case of an affine network, the modulus 
would also increase by a factor of 3 .  That is 

In the high-deformation, phantom limit, the modulus of the networks under 
consideration is predicted to be2'.22 

where the functionality G3 associated with the short chains is always three. The 
average functionality 4, associated with the long chains is expected to be presumably 
l a ~ - g e . ~ - ~  In any case, in the limit of very large functionality ( 1  - 24,)  would 
approach unity. Consequently, we obtain2'.22 

Such result is at variance with topological considerations discussed above that 
require the preservation of the cycle rank. However, the above result is in agree- 
ment with a wealth of experimental evidence. The experiments have shown that 
the elastomeric properties for bimodal networks are dependent on the mole fraction 
of the short chains present in the network as well as the ratio of lengths of the 
short chains to the long 

In treatments ignoring the presence of the short chains: the affine and phantom 
moduli would simply 

At low extents of reaction, the situation would be different in that all junctions 
would be effectively trifunctional (4 = 3). The modulus in the phantom limit has 
been predicted to be2* 

This means that the increase in the modulus from the increased number of chains 
is exactly offset by the decrease in functionality, and the result is the same as that 
obtained treating the network as a simple unimodal network with high function- 
ality. 22 

Also it is important to underline here that the identification of v, with u is proper 
only for perfect networks otherwise it is an approximation that is legitimate for 
high functionality networks. It is important to note here that, in general, v # u,.*~ 
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NETWORK IMPERFECTIONS 243 

FloryZ7 has shown that the effective number of chains for an imperfect network is 
expressed universally by 

v = 25 (17) 

COMPARISONS BETWEEN THEORY AND EXPERIMENT 

The relevant published experimental r e~u l t s l -~  are now analyzed on the basis of 
the revised model discussed above. The extents of reaction, the number of elastically 
effective chains, effective functionality, and other structural parameters of the 
network are derived by the branching theory.2-6 The resutls are tabulated in Table 
I. The experimental moduli at small strains have been obtained from a Mooney- 
Rivlin fit. The straight lines obtained can be extrapolated to zero deformation (a-l  

= 1) and the value of the reduced force is then 2C1 + 2C2 which is generally 
associated with the shear modulus G at small def~rmation.'-~, '~ This method is 
known to overestimate the value of G by about 5%.6J9 Such a difference should 
be tolerable for the present purpose. As has been already mentioned, the constant 
2C2 is a measure of the change in the reduced force for the transition between the 
two extremes of deformation and should approach zero for networks having high 
cross-link functionalitie~.~*'~-'~ In the affine network fluctuations of the junctions 
are totally suppressed. lo,l5-l9 According to the constrained junction theory, the 
affine modulus [f*Iaff of real networks, is between the affine and phantom limits 
even in the isotropic undeformed state. 

In Figure 2, values of G as approximated by 2C1 + 2C2 are plotted against 
values of vRT for networks that are prepared under conditions of high extent of 
reaction of vinyl groups (Pvl > 0.9).2,7 The solid line represents theory according 
to which the affine modulus for a bimodal network calculated according to Equation 
(ll), where K + ~ 4 .  The dotted line shows values of the phantom modulus [ f*Iph  
calculated, according to Equation (12). It is worthy to note here that at values of 
uRT < 0.04 N mm-* there is a lack of experimental data. The data, so presented, 
do not unambiguously suggest any appreciable intercept with the ordinate, within 
limits set by the scatter of the data. We shall see below that this seems to be true. 
An intercept with the ordinate has been often attributed to contributions from 
trapped entanglements.2-6 

It is noteworthy here that the enhancement of [f*] at OL 4 1 has been observed 
to vanish upon swelling, suggesting it is due to difficulties in reaching elastic equi- 
librium when the network chains are very 1 0 n g . l ~ ~ ~ ~  Also such an enhancement 
could be plausibly due to higher slopes in Mooney-Rivlin fits for samples with high 
molecular mass M, between crosslinks and so the extrapolation overestimates G. l9 

Thus, the small-strain modulus G is expected to vanish in the limit vRT + 0. For 
purposes of comparison, the dotted and dashed line represent resuIts according to 
the standard unimodal representation of such networks, i.e., with total neglect of 
the short chains coming from the junction precursor, according to Equation (14). 

The interesting point here is that at intermediate values of uRT, values of G 
exhibit an unmistakable transition towards the phantom limit of the modulus. 

l9 
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244 M. A. SHARAF 

TABLE I 

Elastomeric properties of high functionality polydimethylsiloxane (PDMS) networks 
Fours. Y,. Ib .)ac P v l d  *o’ *a‘ q g  * Ih  If’lu‘ 2c11 [f* lbk “2 &’ 

D md-1 ~ m m - 2  ~ m m . 2  ~ m m - 2  ~ m m - 2  ~ m m - 2  ~ m m - 2  

~ e y m  m ai.2 
10100 

1 2 m  
17000 
21600 
25300 
28100 
12200 
1 3000 
14300 
15200 
17400 
22000 
27500 
29500 
41700 
51000 
52800 
aaoo 
10100 
11100 
1 2 m  
17000 
2 1 0  
28100 
12200 
14300 
15200 
18300 
22000 
25300 
27500 
29500 
52800 
11100 
21600 
11100 
21600 
11100 
21600 

21600 
11100 
13003 
21600 
1 1 1 0 0  
216w 

i i im  

i i im 

KIR m .1.5 9320 
0320 
9320 
9320 
9320 
9320 
11100 

11100 
11100 
11100 
11100 
17400 
17400 
17400 
17400 
17400 
17400 
17400 
21600 
21600 
21600 
21800 
21600 
21800 
28100 
28100 
28100 
28100 
28100 

i i im 

17400 
17400 
21600 
21600 
21600 
21800 
21600 
21800 
28100 
28100 
28100 
28100 
28100 

KIR m .1.5 9320 
0320 
9320 
9320 
9320 
9320 
11100 

11100 
11100 
11100 
11100 
17400 
17400 
17400 
17400 
17400 

i i im 

1.20 
1.20 
1.20 
1.20 
1 20 
1.21 
1.65 
1.16 
1.25 
1.65 
1.28 
1.30 
1.65 
1.31 
1.38 
1.34 
1.65 
1.42 
1.40 
1.11 
1.27 
1.20 
1.30 
1.31 
1.36 
1.45 
1 29 
1.30 
1.80 
1.80 
1.35 
1.80 
1.39 
1.40 
1.52 
1.25 
1.25 
1.39 
1.40 
1.30 
1.32 
1.22 
1 2 2  
1.30 
1.80 
1.37 
1 35 
1.36 

1.21 
1.12 
0.98 
0.95 
0.93 
0.W 
1 20 
1 1 1  
1.01 
0.98 
0.96 
0.92 
1.65 
1.15 
*.lo 
1 0 0  
0.99 
0 03 
0.85 
1.36 
1.17 
1.05 
0.95 
0.94 
0.83 
1.45 
1.15 
1 .04 
0.92 
0.88 

OOODO 
0 0020 
0 0015 
0 0028 
0 0027 
0 0022 
00083 
00012 
0 0018 
00084 
0 0042 
0 0052 
0 0053 
0 0019 
0 0031 
0 0026 
00088 
0 0076 
0 0071 
00017 
00017 
0 0045 
0 0021 
0 0019 
0 0038 
0 0033 
0 0037 
0 0048 
0 0 x 0  
0 W67 
0 0035 
00084 
0 0042 
0 0058 
0 OW7 
0 0052 
0 0049 
0 oO14 
0 0018 
0 0013 
0 0036 
0 0051 
0 0051 
0 0026 
0 OW5 
0 0025 
0 0014 
0 0041 

OOOOD 
0 0083 
0 0623 
0 0637 
0 0822 
0 1550 
0 0046 
0 0750 
0 1380 
0 1520 
0 1640 
0 2180 
0 0052 
0 0188 
0 0020 
0 1550 

0 961 
0 955 
0 961 
0 947 
0 948 
0 953 
0-  
0 965 
0 957 
0 919 
0 935 
0 928 
0 927 
0 956 
0 944 
0 010 
0006 
0 913 
0 9 1 6  
0 058 
0 958 
0 933 
0 954 
0 956 
0 938 
0 012 
0 939 
0 930 
0 016 
0918 
0 941 
0 920 
0 035 
0 924 
0 8 0 1  
0 927 
0 930 
0 982 
0 957 
0064 
0 940 
0 928 
0 928 
0 949 
0 802 
0 950 
0 962 
0938 

0 970 
0 920 
0 749 
0 746 
0711 
0 803 
0 932 
0 721 
0 625 
0 608 
0 593 
0 533 
0 928 
0 ?78 
0 750 
O W  

02020 0549 
0 1830 0571 
02040 0 4 6 5  
00038 0938 
OW20 0711 
01350 0831 
02320 0517 
02880 0481 
03500 0400 
00033 O M 2  
01130 0663 
0 1740 0 582 
03310 0424 
O W  0411 

23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
23 8 
43 9 
43 0 
43 0 
43 0 
43 0 
43 9 
43 0 
43 9 
43 9 
43 0 
43 0 
43 0 
43 0 
43 0 
43 9 
43 9 
10 5 
10 5 
21 5 
21 5 
33 0 
33 0 
3 8 1  
3 8 1  
5 8 4  
5 8 4  
5 8 4  
83 6 
8 3 6  

43 9 
43 9 
43 0 
43 9 
43 9 
43 0 
43 9 
43 0 
43 0 
43 0 
43 0 
4 3  0 
43 0 
43 0 
43 9 
43 9 
43 0 
43 0 
43 9 
43 0 
43 0 
43 0 
43 0 
43 D 
43 0 
43 9 
43 0 
43 0 
43 9 
43 9 

18.3 
18.0 
18.3 
17.7 
17.9 
17.9 
11.9 
19.1 
17.4 
12 2 
16.2 
15.7 
12.4 
18.6 
15.6 
16.0 
11.8 
14.0 
14 2 
36.2 
31.8 
31.8 
30.8 
30.7 
28.4 
26.9 
29.9 
29.1 
20.4 
20.6 
28.8 
20.6 
27.6 
26.7 
23.5 
7.2 
7.3 
14.3 
14.1 
23 6 
22 1 
27.0 
27.0 
40.6 
26.4 
38.3 
57 3 
53.7 

34 3 
33.1 
25.1 
25.6 
24.0 
18 5 
31.7 
20.6 
17.0 
16.6 
16 1 
13.5 
22.9 
23.1 
22 4 
15.9 
13.3 
15.3 
11.2 
28 4 
19.0 
16.7 
12.4 
10 8 
8.5 
26.9 
16.7 
14.3 
8. 5 
8.4 

23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
23.8 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43 9 
43.9 
10.5 
10.5 
21.5 
21.5 
33.0 
33 0 
38.1 
38.1 
58.4 
58.4 
58.4 
83.6 
83.8 

43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43 0 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43.9 
43 9 
43.9 
43.9 
43.9 
43 0 
43.9 
43.9 
43.9 
43.9 
43.0 
43.9 
43.9 
43.9 
43 9 

0.254 
0.220 
0.202 
0 . 0 1  
0.130 
0.103 
0.082 
0.081 
0.183 
0 151 
0.151 
0.141 
0.123 
O.lM 
0.080 
0.075 
0.050 
0.041 
0.010 
0.2% 
0.221 
0.194 
0.172 
0.132 
0.101 
0.078 
0.178 
0.150 
0.138 
0.115 
0.100 
0.084 
0.079 
0.072 
0.039 
0.192 
0.100 
0.202 
0.104 
0.203 
0.101 
0.192 
0.100 
0.198 
0.147 
0.103 
0.202 
0.101 

0.243 
0.226 
0.160 
0.159 
0.145 
0.102 
0.193 
0.125 
0.093 
0.088 
0.083 
0.065 
0.123 
0.092 
0.086 
0.055 
0.045 
0.049 
0.030 
0.101 
0.063 
0.049 
0.031 
0.026 
0.016 
0.078 
0.042 
0.032 
0.01 5 
0.014 

0.227 
0.196 
0.180 
0.152 
0.116 
0.092 
0.068 
0.073 
0.162 
0.126 
0.133 
0.123 
0.103 
0.090 
0.070 
0.086 
0.041 
0.035 
0.034 
0.240 
0.207 
0.182 
0.161 
0.123 
0.094 
0.072 
0.166 
0.140 
0.124 
0.104 
0.083 
0.076 
0.073 
0.067 
0.036 
0.139 
0.072 
0.174 
0.089 
0.186 
0.092 
0.178 
0.082 
0.189 
0.135 
0.087 
0.195 
0.097 

0.229 
0.212 
0 147 
0.146 
0.133 
0.091 
0.181 
0.113 
0.082 
0.077 
0.073 
0.055 
0 112 
0.084 
0.079 
0.048 
0.038 
0.043 
0.025 
0.094 
0.056 
0.043 
0.026 
0.021 
0.013 
0.072 
0.037 
0.027 
0.01 1 
0.010 

0.380 
0 408 
0.377 
0.306 
0.232 
0.191 
0.165 
0.177 
0.325 
0.225 
0.250 
0.268 
0.200 
0.198 
0.174 
0.170 
0.129 
0.106 
0.094 
0.360 
0.373 
0.316 
0.277 
0.216 
0.180 
0.175 
0.316 
0.255 
0.212 
0.242 
0.193 
0.196 
0.173 
0.164 
0.082 
0.298 
0.180 
0.358 
0.191 
0.375 
O.1M 
0.351 
0.200 
0.355 
0.253 
0.191 
0.361 
0.201 

0.435 
0.357 
0.168 
0.154 
0.162 
0.129 
0.316 
0.143 
0.109 
0.102 
0.080 
0.074 
0.200 
0.142 
0.133 
0.087 
0.064 
0.062 
0.052 
0.180 
0.094 
0.059 
0.042 
0.031 
0.023 
0.175 
0.076 
0.047 
0.033 
0.024 

0.396 
0.342 
0.315 
0.265 
0.202 
0.161 
0.123 
0.127 
0.284 
0.227 
0.233 
0.217 
0.185 
0.158 
0.123 
0.116 
0.075 
0.063 
0.061 
0.409 
0.354 
0.311 
0.276 
0.211 
0.161 
0.125 
0.285 
0.240 
0.216 
0.180 
0.159 
0.131 
0.126 
0.115 
0.062 
0.267 
0.139 
0.309 
0.159 
0.321 
0.160 
0.m 
0.150 
0.321 
0.233 
0 166 
0.330 
0.164 

0.391 
0.363 
0.253 
0.252 
0.229 
0.160 
0.310 
0.196 
0.144 
0.136 
0.128 
0.099 
0.104 
0.146 
0.138 
0.085 

0.087 
0.062 
0.061 
0.078 
0.097 
0.126 
0.082 
0.121 
0.078 
0.065 
0.097 
0.091 
0.056 
0.114 
0.091 
0.101 
0.101 
0.105 
0.098 
0.130 
0.078 
0.053 
0.097 
0.113 
0.104 
0.109 
0.070 
0.094 
0.127 
0.065 
0.106 
0.059 
0.101 
0.082 
0.004 
0.074 
0.101 
0.083 
0.105 
0.060 
0.102 
0.052 
0.088 
0.054 
0.075 
0.110 
0.065 
0.108 

0.098 
0.073 
0.356 
0.068 
0.032 
0.O00 
0.053 
0.041 
0.000 
0.O00 
0.O00 
0.005 
0.056 
0.030 
0.019 
0.014 

o.ln3.9 0.019 
0.075 0.025 
0.045 0.002 
0.161 0.104 
0.098 0.020 
0.076 0.012 
0.047 0.004 
0.039 0.008 
0.023 0.O00 
0.125 0.109 
0.065 0.021 
0.048 0.021 
0021 0.003 
o.oie 0.000 

0.102 
0.076 
0.073 
0.098 
0.118 
0.147 
0.118 
0.136 

0.093 
0.124 
0.120 
0.079 
0.133 
0.113 
0.122 
0.142 
0.143 
0.134 
0.149 
0.093 
0.073 
0.116 
0.132 
0.130 
0.134 
0.091 
0.122 
0.166 
0.093 
0.131 
0.085 
0.128 
0.111 
0.135 
0.100 
0.131 
0.097 
0.123 
0.071 
0.127 
0.074 
0.116 
0.069 
0.112 
0.132 
0.077 
0.136 

0.110 
0.102 
0.111 
0.169 
0.116 
0.000 
0.074 
0.132 
0.0w 
0.000 
0.000 
0.061 
0.079 
0.091 
0.075 

0.119 
0.134 
0.039 
0.130 

0.083 
0.056 
0.079 
0.0w 
0.134 
0.105 
0.121 
0.045 
O.Oo0 

0.093 

0.095 

o.om 
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NETWORK IMPERFECTIONS 245 

TABLE I (continued) 
SOUfC. Y,. r *  mec Pwld C’ 4‘ Yg *T* 1%’ 2 C i l  1f’lb’ “2 

0 md-1 Nlm1-2 Nmm.? N n ~ n . ~  Nmme Nmf~l-~ 

28100 0.87 0.3190 0.434 43.9 9.5 43.0 0.016 0.012 0.032 0.023 0.OOO 0,003 

LlagmgaMMarlcl 11303 1.00 0.0330 0.817 11.0 7.3 11.0 0.154 0.112 0.287 0.215 0011 6030 -~ . . . ~ ~. 
113M 1.00 0.0330 0.817 11.0 7.3 11.0 0.154 0,112 0.294 0.215 0.012 0.041 
11303 1.00 0.0610 0.752 37.0 20.9 37.0 0.133 0.120 0.232 0.2W 0.007 O . M O  
11300 1.00 0.0540 0.775 37.0 22.2 37.0 0.141 0.128 0.231 0.222 0.030 0,109 
11300 1.00 0.0480 0.780 37.0 22.5 37.0 0.142 0.130 0.225 0.224 0.012 0.040 

Oppennmand 28ooo 1.00 0 . W  1.003 17.5 17.5 17.5 0.103 0.091 0.205 0.180 0.085 0.085 
Renege7 26ooo 1.00 O.oo00 1.003 37.6 37.5 37.5 0.103 0.097 0,211 0.166 0.108 0,108 

26OOO 1.00 O . W o 0  1.003 60.0 60.0 80.0 0.103 0.100 0.252 0.168 0.080 0.080 
26ooo 1.00 0.WOO 1 . W  76.0 76.0 76.0 0.103 0.100 0.152 0.100 0.138 0.136 
28ooo 1.00 0 . W  1.003 25.0 25.0 25.0 0.103 0.095 0.152 0.163 0.136 0.136 
28wo 1.00 0.0030 1.003 18.5 16.5 16.5 0.101 0.089 0.198 0.168 0.076 0.076 
26003 1.00 0 . W  1.003 12.5 12.5 (2.5 0.099 0.083 0.142 0.140 0.128 0.128 
26000 1.00 O.oo00 1.ooO 10.0 10.0 10.0 0.008 0.078 0.147 0 . l U  0.106 0.105 
28ooo 1.00 O.oo00 1.ooO 25.0 25.0 25.0 0.101 0.093 0.170 0.180 0.106 0.106 
28ooo 1.00 O.oo00 1.003 41.0 41.0 41.0 0.101 0.006 0.144 0.1- 0.116 0.118 

a 
b 
c 501 fraction. 
d 
e 
f 
g 
refernce (29). 
h 
i 
k 
I 

Number average molecular mass of a.cc-divinyl Polydimethylsiloxane 
molar ratio of Si-H groups to vinyl end groups. 

extent of reaction of the vinyl group 
initial functionality of the junction precursor. 
effective functionality of the network. 
The volume fraction of the elastically effective chains in the dry unswdlen state calculated according to equation (A9) in 

A measure of the network chain density as obtained from the sd fraction.’ 
Values of the phantom modulus using the usual assumption of a unimodal network, from equation (9). 
Values of the phantom modulus using the revised equation (7) which recognizes the bimodal nature of the network. 
obtained according to equation (19). 

0.8 I I I 1 I I 

Y 
E 
E 
z. 
Q 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 

VRT ,N mm-2 

FIGURE 2 The shear modulus G for networks having high extents of reaction of the vinyl groups, 
as approximated by 2C, + 2C,, shown as a function of uRT (a measure of the degree of the cross- 
linking obtained from the end-linking c h e m i ~ t r y ) . ~ ~  The circles represent results that were obtained by 
Meyers et a/.z and the filled triangles by Opperman and Rehage.’ The solid line represents the results 
from the present calculations, which do take them into account, according to Equation (11). The dotted 
and dashed line represents results calculated from the unimodal representation of the networks, i.e., 
with total neglect of any contributions from the short chains coming from the end-linking molecules 
themselves, in accordance with Equation (14). The dotted line represents the results of using the new 
interpretation for the phantom modulus, in accordance with Equation (12). The dashed line represents 
the results of calculations according to the Flory-Erman theory, in accordance to Equation (8).I5-l8 

Again, actual values of G predicted by the constrained junction theory should fall 
below the upper bound even at small  train.'^.'^ Such a decrease in values of G 
with increase in cross-link density is expected. Such behavior is essentially due to 
the decrease in the degree of interpenetration and so the severity on the fluctuation 
of junctions, as the network chain lengths de~rease.’~,*~ The present analysis on 
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246 M. A.  SHARAF 

the grounds of the constrained junction theory allows for a decrease in the degree 
of interpenetration as the network chain lengths d e ~ r e a s e . ' ~ . ' ~  Intuitively, and 
according to theory, the modulus [f*]= due to constraints should increase with an 
increase in the number of junctions p. (i.e., with an increase in the cross-linking 
density).15-19 However, this is offset by further increase in the degree of cross- 
linking that would, eventually, lead to lower degrees of interspersion between 
chains and junctions."-" Hence, this will be accompanied by lower values of [ f*Ic  
owing to lower values of the parameter K, as predicted by Equation (8). Therefore, 
such transition is merely a transition between the affine and phantom limits of 
deformation as the network cross-linking density increases. 

In Figure 2, the dashed line represents calculations based on the constrained 
junction model, calculated according to Equations ( 6 )  and (8) .23 Apparently better 
agreement with theory is obtained at relatively lower values of uRT. Deviation at 
higher values of vRT may be attributed to the different schemes utilized to obtain 
values of the parameters K and < . I y  Queslel and Mark have discussed this matter 
in greater details." Also, there has been some evidence that in the networks under 
investigation, higher values of the parameter 5 are required to obtain better fit 
with the theory, contrary to networks having lower functionalities where t; = O.*l 

Further investigation of this subject is now in progress. Our interpretations, thus 
presented, are in accord with the main premises of the Flory-Erman 

Figure 3 is a plot of G against vRT for high functionality networks formed such 
that they have low extent of reactions of the vinyl groups P,,, = 0.4-0.9. The solid 
line represents the upper bound of theory for the bimodal affine network, according 
to Equation (9). A good fit is obtained at low values of uRT that corresponds to 
coincidence of experimental values of G with calculated theoretical values of the 
affine modulus. Again the data, so presented, do not unambiguously suggest any 
discernible intercept with the ordinate. At relatively higher values of uRT, the 
results manifest an unmistakable departure in the values of G from the upper 
(affine) bound of the theory toward the phantom limit. 

0.8 '1""'1 
Y 

0.6 E 

2 0.4 
Q 

0.2 

0 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 

VRT ,N mm" 

FIGURE 3 The shear modulus C for networks having low extents of reaction of the vinyl groups, 
as approximated by 2C, + 2 C 2 ,  shown as a function of uRT (a measure of the degree of the cross- 
linking obtained from the end-linking chemistry). The circles represent results that were obtained by 
Kirk et and the filled triangles by Llorente and Mark.' See legend to Figure 2. 
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NETWORK IMPERFECTIONS 247 

Such observation, in our opinion, can be reasonably attributed to the fact that 
at low extents of reaction not all the vinyl terminated chains will be attached to 
junctions at both ends. This, in turn, would lead to an increase in the number of 
elastically ineffective chains (more specifically, dangling ends) whose number is 
expected to increase with a decrease in PVi. In such networks, lower values of Pvi,  
are expected to result in lower values of the effective functionality and so the 
chemical network density as measured by uRT. Values of the volume fraction of 
the elastically effective chains, u2 and 2C2 are reported in Table I. Comparisons 
among the values of 21,  shows, clearly, that they are smaller for networks having 
low extents of reaction of the vinyl group PVj  than for those with higher extent of 
reaction. This phenomenon is clearly elucidated further in Figures 4-6. In Figure 
4, values of 2C2 plotted against vRT. When thus plotted, the points for the networks 
having low extents of reaction are unmistakably lower. It is then clearly apparent 

0.18 I I I I I 

0.14 - - 
- 
- 
- 

-0.02 : 
I I I I I 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 

VRT ,N mm" 

FIGURE 4 Dependence of the empirical constant 2C, on vRT. The circles represent results obtained 
for networks having high extents of reaction of the vinyl groups*,' and the triangles are those for the 
ones with lower extents of reaction.5 The experimental data are for networks having high extents of 
reaction of the vinyl group as reported by Meyers el nl.' (0) ;  and those for networks with low extents 
of reaction as reported by Kirk et ~ 1 . ~  (+); and Llorente and Mark' (0). 

0.14 I I I r 

0.12 - 
0.10 - Y 

E 0.08 - E 

N 0.04 - 
- 

-0.02 J 

I I I I 

0.5 0.6 0.7 0.8 0.9 1 

VZ 

FIGURE 5 The empirical constant 2C,  shown as a function of the volume fraction of the elastically 
effective chains u2. See legend to Figure 4. 
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248 M. A. SHARAF 

1 

0.9 

0.8 

p" 0.7 

0.6 

0.5 

0.4 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

pvi 

FIGURE 6 The volume fraction u2 of the elastically effective chains in the dry unswollen state shown 
as a function of Pv,, See legend to Figure 4. 

3.5 

3.0 

2.5 - 2.0 

.$ N 1.5 

g 1.0 

0.5 

0.0 

-0.5 

1 1 1 1 e 1 
I- 4 

0.00 0.05 0.10 0.15 0.20 0.25 
VRT ,N mm-2 

FIGURE 7 Dependence of the empirical constant 2C;/2C,, calculated in accordance 'with Equation 
(19) on vRT. See legend to Figure 4. 

that dangling ends could act as diluent, even in the dry unswollen state, and thus 
leading to an eventual decrease in values of 2C2.28 This, in turn, offer a reasonable 
explanation why values of G are lower for networks with low extents of reaction. 

It is to be noted here that the reported values of both 2C2 and the ratio 2C21 
2C1 showed an unmistakable increase with an increase in vRT in networks having 
low extents of r e a ~ t i o n . ~  This is clearly demonstrated in Figure 4. Such observation 
is at variance with all theoretical predictions. l-'.14-19 Following the foregoing ar- 
guments, it can be explained, however, on the same grounds. 

Our revised interpretation could also explain the observation that some of the 
experimental values of the constant 2C2 for networks with high extent of reaction 
were not as small as expected.'-' This phenomenon is clearly manifested in Figure 
4. Specifically, values of 2C2 are in qualitative agreement with the theory; however, 
they are higher than the expected value of zero. In this connection, the bimodal 
networks being considered have two moles of short chains with 4 = 3 for each 
mole of long chains with + probably greater than 10 or so. Because of their being 
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NETWORK IMPERFECTIONS 249 

0.8 

0.7 

0.6 
'y 
E 0.5 

z, 0.4 

0.3 

0.2 

0.1 

a 
0 0.1 0.2 0.3 0.4 0.5 

2c, ,N mm-* 

FIGURE 8 The shear modulus G, as approximated by 2C, + 2C2, shown as a function of 2C, (the 
Mooney estimate of the high deformation modulus). The solid line is for the affine limit for an imperfect 
network as approximated by 2 x (2C,), calculated according to equation (23). The dotted line is for 
ZC, itself. The filled circles represent results that were obtained by Opperman and Rehage.' See legend 
to Figure 4. 

attached to junctions of functionality three and their decreased interpenetration, 
the suppression of the fluctuations associated with the short chains will be much 
less than those associated with long chains attached to junctions of very high 
functionality.21,22 

Figures 5 and 6 lend further support to our statements. The results, so portrayed, 
confirm how lower extents of reaction P,, would inadvertently result in lower values 
of v2 as well as those of 2C2. In any case, the dependence of 2C2 on the volume 
fraction of the elastically ineffective chains that inadvertently act as a diluent is 
now established. 

In this connection, Flory and TataraZ9 expressed the dependence of the reduced 
stress [f*] on the volume fraction of diluent by a modified form of the Mooney- 
Rivlin relationship which can be expressed as follows: 

where 

Several investigators found m = 0.29 On the other hand, more recent results 
indicated m = l/2.29 As discussed before, it has been observed that 2C2 decreases 
with ~we l l ing . '~ .~~  The results for various experiments for a range of degrees of 
swelling appeared to follow Equation (18) with m = 112 and were in qualitative 
agreement with the preceding eq~at ion. '~  The foregoing treatment obviates the 
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250 M. A. SHARAF 

conventional scheme of assigning separate values to 2C, at  each of dilution for a 
given sample. 

Values of 2C; and the more relevant ratio 2C;/2C1 were obtained in accordance 
with Equation (19) with rn assigned the value 1/2. In Figure 7, values of 2C;/2C1 
are represented against vRT. When thus plotted, the various sets of points for all 
samples are found to  conform to  a single functional relationship (Equation 19) 
regardless of the volume fraction zj2 of the elastically effective chains of each sample 
in the dry unswollen state. As such, it is now clearly apparent that the network 
imperfections act as diluent. These results confirm and extend our predictions that 
such inherent imperfections would have a pronounced effect on the network elas- 
tomeric properties. In any case such behavior reflects a real network property and 
the fact that 2C, decreases with dilution provide further evidence that the parameter 
2C2 is essentially a topological contribution and contains no contributions from the 
chemical network. 

Therefore, accurate values of the reported values of the moduli would be given 
justifiably by inclusion the volume fraction u2 of the elastically effective chains in 
the unswollen state in Equation (1). It follows that 

[f*Iaa = Y R T ( V / V ~ ) ~ ~ Z J ; ~ ' ~  

[ f* IPh = (1 - 2/+)vRT(V/V0)"3u;1'3 

(All values of G and 2C1 so represented in this text has been corrected accordingly). 
Consequently, when the factor zly3 is incorporated in Equation (l), values of G as 
well as 2C, so obtained would be lower than those reported. The results thus 
presented offers further proof that the volume fraction 1,;  1'3 of elastically ineffective 
chains should be incorporated in calculations, even in the dry unswollen state. 

Beyond any doubt, the results clearly demonstrate that the empirical constant 
2C2 involves essentially the network topological contributions and contains no 
contributions from the chemical network. Also. such results offer an unambiguous 
verification that the enhancement of [f*] at cx ---f 1 vanishes upon swelling, sug- 
gesting it is due to difficulties in reaching elastic equilibrium when the network 
chains are very Moreover, a proof of our statement about the nullity of 
the intercept in Figure 2 could be provided by inclusion of the data points portrayed 
here at very low values of vRT into that figure. Finally, the behavior observed is 
within the limits of the constrained-junction theory of Flory and Erman. 15-18 

It is now clearly apparent that accurate determination of the network parameters 
requires the utmost control of stoichiometry. A straight-forward method to test 
the validity of the predictions of the theory of Flory and Erman consists of plotting 
G = 2C, + 2C2 against 2C1 = [ f * I p h .  As previously discussed, 2C, may be identified 
with [f*Ip,,, within limits set by inaccuracies in the Mooney-Rivlin procedure." 
According to theory,l5-l8 [ f*Iph holds for any network regardless of the function- 
ality of its junctions and the possible presence of network defects. This quantity 
is proportional to the effective interconnectivity of the network and, therefore, can 
be used to define an effective number of chains v and junctions p, regardless of 
how incomplete the network f ~ r m a t i o n . ' ~  Such a plot, including data obtained from 
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NETWORK IMPERFECTIONS 25 1 

the literature is demonstrated in Figure 8 for the networks having high extents of 
reaction. In the figure, the dashed line represents the lower bound of the theory, 
the phantom network, corresponding to values of 2C,. The dotted line represents 
the lower bound of the theory, the phantom network, corresponding to values of 
2C, itself. The solid line approximates the upperbound, the affinely-deforming 
network, calculated according to Equation (16) for an imperfect network it follows 
that 

[f*Iaff = uRT = 26RT = 2(2C1) 

The results are well represented within the two limits of deformation, namely the 
affine and phantom limits. Better fit is obtained at small values of uRT, as compared 
to Figure 2. Moreover, the values of G for networks having low extents of reaction 
approaches those of 2C, because of the presence of numerous elastically ineffective 
chains that would act as a diluent. Again, as the degree of cross-linking is increased, 
a clear transition toward the lower bound (the phantom limit) is observed. This 
procedure circumvents complications in accurately determining molecular masses, 
functionalities, and inherent imperfections. Such difficulties can lead to inaccuracies 
in the determination of the network parameters. Moreover, the results so repre- 
sented are in excellent agreement with Flory’sZ7 universal treatment of imperfect 
networks. Undoubtedly, such behavior reflects a real characteristic of elastomeric 
network. 

In sum, this study provides further verification about the role played by the short 
chains between cross links along the junction precursor. Also, the small strain 
modulus of networks having high-functionality cross-links and covering a range in 
the extent of reaction of the vinyl groups P,, can be successfully interpreted using 
the constrained junction theory. Taking into account the decrease in the degree 
of interpenetration as the degree of cross-linking increases offered a reasonable 
explanation for the departure of the values of the small-strain modulus from those 
for an affine network as well as the transition observed between the affine and the 
phantom limits of deformation. Also, the role played by the network imperfections 
has been clearly demonstrated. Apparently, the results at hand ascertain that the 
volume fraction of the elastically ineffective chains must be taken into considera- 
tion, even in the dry unswollen state, if quantitative significance is to be ascribed 
to the results of equilibrium elastic measurements. Additional critical comparisons 
should be concerned with the application of the constrained chain theory.30 The 
present investigation, thus, represents another example of the wide applicability 
of the constrained junction theory for elastomeric polymer networks. 
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